Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Arch Public Health ; 79(1): 188, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1486599

ABSTRACT

BACKGROUND: With the spread of coronavirus disease 2019 (COVID-19), an existing national laboratory-based surveillance system was adapted to daily monitor the epidemiological situation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the Belgium by following the number of confirmed SARS-CoV-2 infections, the number of performed tests and the positivity ratio. We present these main indicators of the surveillance over a one-year period as well as the impact of the performance of the laboratories, regarding speed of processing the samples and reporting results, for surveillance. METHODS: We describe the evolution of test capacity, testing strategy and the data collection methods during the first year of the epidemic in Belgium. RESULTS: Between the 1st of March 2020 and the 28th of February 2021, 9,487,470 tests and 773,078 COVID-19 laboratory confirmed cases were reported. Two epidemic waves occurred, with a peak in April and October 2020. The capacity and performance of the laboratories improved continuously during 2020 resulting in a high level performance. Since the end of November 2020 90 to 95% of the test results are reported at the latest the day after sampling was performed. CONCLUSIONS: Thanks to the effort of all laboratories a performant exhaustive national laboratory-based surveillance system to monitor the epidemiological situation of SARS-CoV-2 was set up in Belgium in 2020. On top of expanding the number of laboratories performing diagnostics and significantly increasing the test capacity in Belgium, turnaround times between sampling and testing as well as reporting were optimized over the first year of this pandemic.

3.
Vaccine ; 39(39): 5456-5460, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1364509

ABSTRACT

In Belgium, high-risk contacts of an infected person were offered PCR-testing irrespective of their vaccination status. We estimated vaccine effectiveness (VE) against infection and onwards transmission, controlling for previous infections, household-exposure and temporal trends. We included 301,741 tests from 25 January to 24 June 2021. Full-schedule vaccination was associated with significant protection against infection. In addition, mRNA-vaccines reduced onward transmission: VE-estimates increased to >90% when index and contact were fully vaccinated. The small number of viral-vector vaccines included limited interpretability.


Subject(s)
COVID-19 , Vaccines , Belgium/epidemiology , Contact Tracing , Humans , SARS-CoV-2
4.
Lancet Microbe ; 2(3): e105-e114, 2021 03.
Article in English | MEDLINE | ID: covidwho-1152746

ABSTRACT

BACKGROUND: Seasonal human coronaviruses (hCoVs) broadly circulate in humans. Their epidemiology and effect on the spread of emerging coronaviruses has been neglected thus far. We aimed to elucidate the epidemiology and burden of disease of seasonal hCoVs OC43, NL63, and 229E in patients in primary care and hospitals in Belgium between 2015 and 2020. METHODS: We retrospectively analysed data from the national influenza surveillance networks in Belgium during the winter seasons of 2015-20. Respiratory specimens were collected through the severe acute respiratory infection (SARI) and the influenza-like illness networks from patients with acute respiratory illness with onset within the previous 10 days, with measured or reported fever of 38°C or greater, cough, or dyspnoea; and for patients admitted to hospital for at least one night. Potential risk factors were recorded and patients who were admitted to hospital were followed up for the occurrence of complications or death for the length of their hospital stay. All samples were analysed by multiplex quantitative RT-PCRs for respiratory viruses, including seasonal hCoVs OC43, NL63, and 229E. We estimated the prevalence and incidence of seasonal hCoV infection, with or without co-infection with other respiratory viruses. We evaluated the association between co-infections and potential risk factors with complications or death in patients admitted to hospital with seasonal hCoV infections by age group. Samples received from week 8, 2020, were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). FINDINGS: 2573 primary care and 6494 hospital samples were included in the study. 161 (6·3%) of 2573 patients in primary care and 371 (5·7%) of 6494 patients admitted to hospital were infected with a seasonal hCoV. OC43 was the seasonal hCoV with the highest prevalence across age groups and highest incidence in children admitted to hospital who were younger than 5 years (incidence 9·0 [95% CI 7·2-11·2] per 100 000 person-months) and adults older than 65 years (2·6 [2·1-3·2] per 100 000 person-months). Among 262 patients admitted to hospital with seasonal hCoV infection and with complete information on potential risk factors, 66 (73·3%) of 90 patients who had complications or died also had at least one potential risk factor (p=0·0064). Complications in children younger than 5 years were associated with co-infection (24 [36·4%] of 66; p=0·017), and in teenagers and adults (≥15 years), more complications arose in patients with a single hCoV infection (49 [45·0%] of 109; p=0·0097). In early 2020, the Belgian SARI surveillance detected the first SARS-CoV-2-positive sample concomitantly with the first confirmed COVID-19 case with no travel history to China. INTERPRETATION: The main burden of severe seasonal hCoV infection lies with children younger than 5 years with co-infections and adults aged 65 years and older with pre-existing comorbidities. These age and patient groups should be targeted for enhanced observation when in medical care and in possible future vaccination strategies, and co-infections in children younger than 5 years should be considered during diagnosis and treatment. Our findings support the use of national influenza surveillance systems for seasonal hCoV monitoring and early detection, and monitoring of emerging coronaviruses such as SARS-CoV-2. FUNDING: Belgian Federal Public Service Health, Food Chain Safety, and Environment; Belgian National Insurance Health Care (Institut national d'assurance maladie-invalidité/Rijksinstituut voor ziekte-en invaliditeitsverzekering); and Regional Health Authorities (Flanders Agentschap zorg en gezondheid, Brussels Commission communautaire commune, Wallonia Agence pour une vie de qualité).


Subject(s)
COVID-19 , Coinfection , Coronavirus OC43, Human , Influenza, Human , Adolescent , Adult , Belgium/epidemiology , COVID-19/epidemiology , Child , Coinfection/epidemiology , Hospitals , Humans , Influenza, Human/epidemiology , Primary Health Care , Retrospective Studies , SARS-CoV-2
5.
Arch Public Health ; 78(1): 121, 2020 Nov 18.
Article in English | MEDLINE | ID: covidwho-934302

ABSTRACT

BACKGROUND: In response to the COVID-19 epidemic, caused by a novel coronavirus, it was of great importance to rapidly collect as much accurate information as possible in order to characterize the public health threat and support the health authorities in its management. Hospital-based surveillance is paramount to monitor the severity of a disease in the population. METHODS: Two separate surveillance systems, a Surge Capacity survey and a Clinical survey, were set up to collect complementary data on COVID-19 from Belgium's hospitals. The Surge Capacity survey collects aggregated data to monitor the hospital capacity through occupancy rates of beds and medical devices, and to follow a set of key epidemiological indicators over time. Participation is mandatory and the daily data collection includes prevalence and incidence figures on the number of COVID-19 patients in the hospital. The Clinical survey is strongly recommended by health authorities, focusses on specific patient characteristics and relies on individual patient data provided by the hospitals at admission and discharge. CONCLUSIONS: This national double-level hospital surveillance was implemented very rapidly after the first COVID-19 patients were hospitalized and revealed to be crucial to monitor hospital capacity over time and to better understand the disease in terms of risk groups and outcomes. The two approaches are complementary and serve different needs.

SELECTION OF CITATIONS
SEARCH DETAIL